Ant-Stigmergy Algorithm on Real-World Continuous Optimization Problems

نویسندگان

  • Peter Korošec
  • Jurij Šilc
چکیده

Ants have always fascinated human beings. What particularly strikes the occasional observer as well as the scientist is the high degree of societal organization that these insects can achieve in spite of very limited individual capabilities (Dorigo et al., 2000). Ants have inspired also a number of optimization algorithms. These algorithms are increasingly successful among researches in computer science and operational research (Blum, 2005; Cordón et al., 2002; Dorigo & Stützle, 2004). A particular successful metaheuristic—Ant Colony Optimization (ACO)—as a common framework for the existing applications and algorithmic variants of a variety of ant algorithms has been proposed in the early nineties by Marco Dorigo (Dorigo, 1992). ACO takes inspiration from the foraging behavior of some ant species. These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony. ACO exploits a similar mechanism for solving combinatorial optimization problems. In recent years ACO algorithms have been applied to more challenging and complex problem domains. One such domain is continuous optimization. However, a direct application of the ACO for solving continuous optimization problem is difficult. The first algorithm designed for continuous function optimization was continuous ant colony optimization (Bilchev & Parmee, 1995) which comprises two levels: global and local; it uses the ant colony framework to perform local searches, whereas global search is handled by a genetic algorithm. Up to now, there are few other adaptations of ACO algorithm to continuous optimization problems: continuous interacting ant colony (Dréo & Siarry, 2002), ACO for continuous and mixed-variable (Socha, 2004), aggregation pheromone system (Tsutsui, 2006), and multilevel ant-stigmergy algorithm (Korošec & Šilc, 2008). In this chapter we will present so-called Differential Ant-Stigmergy Algorithm (DASA), a new approach to the continuous optimization problem (Korošec, 2006). We start with the DASA description followed by three case studies which show real-world application of the proposed optimization approach. Finally, we conclude with discussion of the obtained results. O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-parameter Optimization Using Stigmergy

This paper describes the so-called Differential Ant-Stigmergy Algorithm (DASA), which is an extension of the Ant-Colony Optimization for continuous domain. A performance study of the DASA on a benchmark of real-parameter optimization problems is presented. The DASA is compared with a number of evolutionary optimization algorithms including covariance matrix adaptation evolutionary strategy, dif...

متن کامل

A Stigmergy-Based Algorithm for Continuous Optimization Tested on Real-Life-Like Environment

This paper presents a solution to the global optimization of continuous functions by the Differential Ant-Stigmergy Algorithm (DASA). The DASA is a newly developed algorithm for continuous optimization problems, utilizing the stigmergic behavior of the artificial ant colonies. It is applied to the high-dimensional real-parameter optimization with low number of function evaluations. The performa...

متن کامل

FORCED WATER MAIN DESIGN MIXED ANT COLONY OPTIMIZATION

Most real world engineering design problems, such as cross-country water mains, include combinations of continuous, discrete, and binary value decision variables. Very often, the binary decision variables associate with the presence and/or absence of some nominated alternatives or project’s components. This study extends an existing continuous Ant Colony Optimization (ACO) algorithm to simultan...

متن کامل

High-dimensional real-parameter optimization using the differential ant-stigmergy algorithm

Purpose – The purpose of this paper is to present an algorithm for global optimization of high-dimensional real-parameter cost functions. Design/methodology/approach – This optimization algorithm, called differential ant-stigmergy algorithm (DASA), based on a stigmergy observed in colonies of real ants. Stigmergy is a method of communication in decentralized systems in which the individual part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012